
QPAM

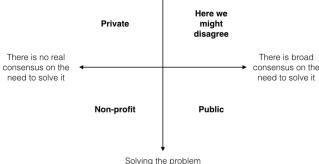
Problem Definition - Tony

- · What is public policy?
 - It is a strategy or course of action that governments take
- Policy Analysis
 - Identify appropriate policy for tackling the identified policy problem
 - Find appropriate Policy Instruments
 - · Appraising effects of Instruments
- Defining the Problem
 - Don't mix problems with consequences of other problems
- · When should government solve problems?
 - Market failures and inefficiencies (Public goods, externalities, information asymmetries, monopolies)
 - · Inequalities (economic, discrimination)
 - Things we expect governments to do and lack other institutions (Schools, Post,..)
- When you can't solve a problem
 - · Narrow it down
 - Expand it
 - · Which one to use depends if the problems are political are technical

System Dynamics - Oskar

 System Dynamics is an approach to understanding nonlinear behavior of complex systems over time by using stock flows, feedback loops and diagrams.

Investment Appraisal and CEA - Tobias


Important Concepts

Cash-flow (CF)

- Sum of expenses and revenues over a period of time (project's lifetime)
- Nominal CF: non discounted
- Real CF: discounted with private discount rate r

Discount Rate (r)

real cashflow =	nominal cashflow	r = discount rate
	$(1+r)^{t}$,	t = year of cash-flow

is an act of giving

You can make money

solving the problem

Page 1 sur 14

- · represents the cost of capital or opportunity cost of capital
- how much could I earn with the money in a similar investment (similarly risky)
- Cost of capital depends on source of capital (Equity and Debt don't have same rate)

Capital Structure

- Indicates the share of debt and equity
- Weighted Average Cost of Capital (WACC)
 - combine capital structure and cost of debt and equity in one number.

$$r = WACC_{pretax} = \frac{E}{V} * k_E + \frac{D}{V} * k_D \quad (V = investment \ volume)$$

Profitability Indicators

Payback Period (P)

- · Time taken for a project to recover its initial investment
- Usage:
 - Investment attractive if P < certain threshold (ex 5 years)
- Problems:
 - Opportunity cost of Capital not considered -> Don't use
 - No integration of time-value of money
- Advantages:
 - · very simple to calculate
 - no discount rate needed

Internal Rate of Return (IRR)

- Rate (%) at which the investment has zero NPV
- Solve NPV = 0 for rate r. Found r is IRR.
- Express return rate of an investment
- Usage:
 - IRR > cost of capital -> project more profitable than minimal needed return, do project
 - When two investments with same NPV, choose the one with highest IRR
- Problems:
 - Cannot compare projects with different size (different initial investment costs, CF etc)
 - Problematic when lifetime of alternatives are different
 - Use with extra caution or **Don't use**.
- Advantages:
 - No discount rate needed for calculation
 - considers opportunity cost

• Net Present Value (NPV)

- Sum of discounted CF over life time minus upfront investments
- · A project's Net contribution to wealth
- Expected money to be earned by investment at today's rate
- Profitability Threshold is NPV = 0
- Usage:
 - If NPV > 0 do the project. Means that you earn more than your cost of capital.
- Problems:
 - Two projects with same NPV could have very different return on investment -> PI
 - Need discount rate to calculate
 - Not great when comparing projects of different sizes
- Advantages:
 - Considers opportunity cost
 - Possible use of dynamic discount rates -> Use

• Profitability Index (PI)

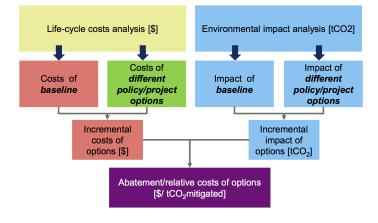
• NPV over initial investment cost

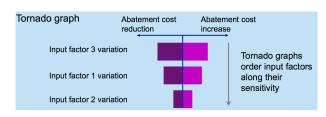
Page 2 sur 14

- Usage:
 - If PI positive, profitable, do the project
 - · Choose alternative with highest PI
- Problems:
 - Don't know how much you actually earn
 - Combine with NPV
- Advantages:
 - · Gives idea of return on investment
 - don't need discount rate —> Use

Life-Cycle Cost (LCC) and Levelized Cost of Electricity (LCOE)

- · LCC
 - For calculating Cost-Effectiveness of different options.
 - LCC = NPV of only the costs (discounted)
 - LCC = CAPEX + sum_{t=0}^{T} OPEX/(1+r)^t
- · LCOE
 - It is the constant electricity price that would be required over lifetime of a plant to cover all operating expenses, payment, debt.
 - LCOE is the discounted LCC normalized by the discounted expected power output over the lifetime of the project
 - LCOE = LCC / (sum_t kWh_t)
 - Application:
 - Good for calculating Feed-in Tariffs
 - · LCOE good for comparing technologies (even with different life times)
 - Need to compare projects with the exact same output.


Cost Effectiveness Analysis (CEA)


- Objective:
 - Reach certain target at minimal cost (when goal is the target)
 - Achieve maximal impact for a given cost (when budget constrained)
- Incremental Costs
 - Additional costs of a project compared to the baseline (can be negative)
- Environmental Impact Assessment:
 - Indicators:
 - tCO2, tons freshwater saved,
 - hectares of forest saved/created
- Abatement Costs
 - Abatement costs = Incremental Costs / Incremental environmental impact

Dynamics and Sensitivities

- Learning Curves
 - Is the cost per kWh going down as cumulative production goes up?
- Sensitivity Analysis
 - · Incorporate uncertainty and future assumptions
 - CEA should contain sensitivity analysis to identify most relevant factors influencing cost effectiveness

Page 3 sur 14

 Take key metrics and evaluate a change of += 33% of the metrics on NPV or abatement cost.

Uncertainty and Framing - Oskar

• Five type of uncertainties: Randomness, Indeterminacy, Reductionism, Paradigmatic uncertainty and Unknowable relations

Randomness

- What is it?
 - Stochastic behavior
 - · We know the range but not the value
 - Get expected values, standard deviations, statistics
- Example:
 - Roll a dice, Flip a coin
- How to deal with it
 - Sensitivity analysis (Monte Carlo)
 - Estimate from experience
 - Hedging

Indeterminacy

- What is it? —> No numbers
 - qualitatively known but not reliably quantified
 - We know X leads to Y but not how much
- Example:
 - Weather forecast
- How to deal with it
 - Contingent valuation (try to quantify anyway)
 - Heuristics (rule of thumb)
 - Stylized facts

Reductionism (Proxy relationships)

- What is it? -> Incomplete understanding
 - X connects to Y, don't know how and what else
 - We can't measure X so we measure Z instead
- How to deal with it
 - Lay knowledge (Stories, Narratives, Subjective)
 - Mixed methods (quantitative and qualitative)

Paradigmatic Uncertainty

- What is it
 - Perspective Y is not relevant, X is what we do we are experts
 - Narrow perspectives
 - Neglect the unseen
- How to deal with it
 - Inderdisciplinarity (co-production of knowledge)
 - · Stay curious

Unknowable relations

What is it

- · I have no idea what just happened
- Unknown unknowns
- Blak swans
- Just because you have never seen it doesn't mean it is never going to happen

How to deal with it

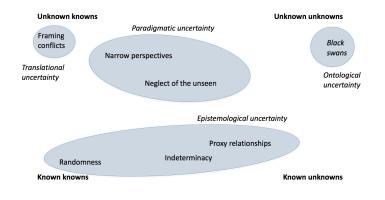
- Humility
- Adaptation

Errors

- Type 1: False positive
 - · saying a men "you're pregnant"
 - reject null hypothesis when it is true

Type 2: False negative

- saying a pregnant woman "you are not pregnant)
- · accept null hypothesis when it is wrong


Type 3: III defined problem

- having the correct answer to the wrong question
- Means you are using the wrong method
- Hard to avoid when you are deeply in the discipline
- Example: Rat experiment for heroin

	Uncertainties	Analyse with	Likely errors
Context (exogenous)	Will model apply to my situation or scenario?	Scenarios / pathways	Type 3 errors
Model design	What questions can the model answer (paradigmatic)?	Model comparisons	
Model implementation	Correctness (reductionism)		Type 1 or 2 errors
Model data		Sensitivity analysis	
Measurements	Variability (randomness)		

Framing and Agenda Setting

- Definition of the problem also circumscribes its solution
- Don't suggest a solution in the problem definition
- Cognitive bias, Anchoring

Game Theory - Tony

Cooperative vs Non cooperative games

- Cooperative games are the ones in which Pareto optimum and Nash equilibrium in different cells.
- Example of cooperative games:
 - Common goods, tragedy of the commons
- · Examples of non-cooperative games
 - Firm location (firms cant benefit form cooperation -> non-cooperative)
 - Market entry (cooperation only benefits one firm -> non-cooperative)
 - Price matching (cooperation is illegal -> non-cooperative)

Zero-sum vs Non-zero-sum games

- Non zero-sum game: usually cooperative games, like ultimatum game
- · Zero-sum game, one winner and one looser, total payoff fixed, only question is the repartition

Uncertainty Analysis - Tobias

Uncertainty and Risk

- Risk is the outcome of action taken despite given (known and/or unknown) uncertainties
- Risk = probability of event * financial impact
- · Integrate it in CEA by replacing variables with random variables

Interpreting Value at Risk

- · Give standard errors in addition to expected values
- · Evaluate on a expected value of NPV vs standard deviation of NPV graph
 - · Choice will depend on which kind of investor you are
 - Risk-averse investor
 - facing two investments with same expected return, will choose the less risky one
 - Risk-neutral investor
 - indifferent to risk, maximizes return
 - Risk-seeking investor
 - · facing two investments with same expected return, will choose the most risky one

Hedging Risk with options

Call option

Page 5 sur 14

- right to purchase a commodity at a certain price
- Put option
 - right to sell a commodity at a certain price
- Possible to hedge risk by purchasing options, correlated negatively with your other projects.

Risk Analysis - Oskar

Risk Theory

Aleatory Risk

- Unpredictable, stochastic events that cause harm
- Risk = Probability * Vulnerability * Damage
- Vulnerability: depends on containment and Geography

Fault Trees

- Risk usually comes from compound failures
- Build a fault tree in order to see where the critical elements are

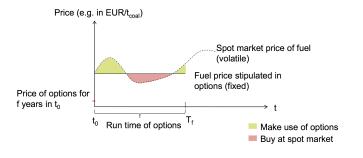
Human Error

- When people try to respond to problem but make it worse
- Can be mitigated through Training, Procedures and Documentation

Generalized Peter Principle

 "Anything that works will be used in progressively more challenging applications until it fails"

Risk Vulnerability


- How exposed you are to a problem
- Can be mitigated through:
 - Spacial separation
 - · protective measures
 - Escape plans and measures
- Depends often on resources —> Small groups sacrificed over large groups

• Risk Damage

- Problem: Data Scarcity
 - Experiments are unethical, mainly data from simulations
 - Generally done by insurers and reinsurers

Individual Risk

- Chance of death of an individual
- Societal Risk
 - number of people suffering harm
 - Long tail is important
- Risk Resilience
 - Start managing risk long before the problem happen
 - Prevent:
 - Minimize chances of real problems
 - Fix what is broken (even if costs time and money)
 - Establish procedures, training, documentation, checklists
 - · Backup equipment on site
 - Respond:
 - Get problem diagnosed and under control
 - Monitoring and Alarms
 - Pre established Response plans
 - Restore:
 - Get things fixed temporarily
 - Rebuild
 - Make things better than they were
 - Make better plans for next problem

Data Quality and Errors - Oskar

Error Propagation

- sum of error of variables != sum of variables's errors
- If fully covariant or independent, different formula.

Statistical Analysis

• Use carefully, Garbage in -> Garbage out

Long Tail

Most distributions in risk analysis are interpreted as Bell curves when they actually follow a
power law —> Long tail problem as for extreme X the power law has higher probability than
gaussian probability distribution.

lf

Bad Data

- · For example caused by NDAs. (confidential data)
- Hidden caveats
- · Change of collecting method
- Mismatches between datasets.

Generating Alternatives - Tony

Things Governments do

- Taxes
- Regulations
- · Subsidies and grants
- · Provide services
- Provide information
- Give rights/permissions
- Structure Markets
- Public Education
- · Financing and Contracting (infrastructure)

Three Step Process

- Model the system you want to analyze, understand what processes are at work and what policies might influence those processes
- Conceptualize some different approaches, options to reach goal.
- Develop a few detailed Ideas

Optimization Models - Oskar

Energy System

- Consist of:
 - Primary Energy Resources (Oil, Gas, Hydro)
 - Conversion Technologies (Power plants, cars)
 - Demand for Energy Services (Heat, Light, Mobility)

Linear Optimisation

- Set of conversions AX = y with constraints
- Finding minimum in an n+1 dimensional space, n capacity variables + cost.

- · Advantages:
 - · Linear models light and deterministic
 - Easy to manage
- Disadvantages
 - · Non-linear systems very hard
 - Problem of local optima in the case of a non-convex system
 - · No feedbacks like with system dynamics
- Used to optimize one quantity at the time (cost, time, profit utility)
- Can be static (one point in time) or dynamic (succession of static models, feedback and learning possible)

A + B = C

then $\sigma_A + \sigma_B = \sigma_C$ (if variables are fully covariant) then $\sigma_A^2 + \sigma_B^2 = \sigma_C^2$ (if variables are fully independent)

Multi-Criteria Decision Analysis - Evelina

Goals of MCDA

- Assess several Policy Alternatives
- · Acknowledge existence of multiple criteria that cannot be evaluated using the same units
- · Combine priorities of policy-makers, stakeholders and the public

Criteria

- Choosing Criteria
 - Value-focused thinking
 - · Elicit overall objectives of relevant actors
 - Translate these objectives into measurable criteria

Alternatives-focused thinking

· Define criteria by thinking through strength and weaknesses of different alternatives

Requirements for Criteria

- Value relevance —> are they goals of the decision makers?
- Understandability
- Measurability
- Non-redundancy
- Judgmental independence —> criteria should be independent
- Balancing completeness and conciseness -> complete list but not longer than necessary
- Operationality -> usable within reasonable effort

Evaluate Criteria

- · for all criteria for each policy evaluation
- · Convert criteria performance into value units and normalize them (0=worst, 1=best)

Eliciting Weights for aggregating criteria into one index

- Individual
 - · Ask to rank importance of criteria one by one
 - Pairwise comparison
- Group
 - · Silent negotiations, put one card up at each round

Aggregate Criteria into Index

- Weighted sum for each policy alternative
- Or Multi-Attribute Value Theory (MAVT)
- · Assumption: additive functions and compensation

Expert Elicitation - Evelina

Goals of Expert Elicitation

- Collect quantitative evidence using judgment of experts
- · Help decision makers under deep uncertainties and lack of other evidence
- · Complement (not replace) other types of evidence
- Basically when you have no model, give data to the expert and get an estimation and confidence interval from him. The expert is the model.

Application Examples

Natural or Environmental Phemonena

Page 8 sur 14

- · Characteristics of future technologies
- New or poorly understood risks

Why Experts suck

Availability bias

- · Some happened recently/close to here, overestimate the probabilities of it happening again
- Reducing: before elicitation help experts recall the evidence
- Qualitative vs Quantitative Estimates
 - · Some experts not comfortable with giving probabilities, give qualitative words like "likely"
- Overconfidence bias
 - Reducing bias:
 - Ask about speed of light, and confidence level. Confront it afterwards.
- Anchoring and Adjustment bias
 - Reducing bias:
 - · let experts choose their own scale, don't put scale on axis
 - Start by eliciting upper and lower bounds
 - "Can you imagine higher/lower ?"

What you should pay attention to

- · Ask only questions for which there are some empirical evidence
- Cut problem into tangible pieces
- Tell the experts about the biases at the start of the interview

Use and abuse of expert elicitation in support of decision making for public policy - Reading

- Are there any experts?
 - · When there are no empirical data or no validated model don't ask experts
 - · If there is data available there are experts
- Interpretation of probability
 - · Subjective probability should converge to classical probability
 - · Careful with anchoring, ask first about extremes
- Avoid overconfidence
 - If enough questions asked to expert, plot calibration curve —> translation from probabilities given by expert and probabilities in the real world
- · Drop experts whose calibration score is lower than a cutoff
- · If many experts have very different evaluations don't combine their answers
- · Danger:
 - some may find expert elicitation as simple low cost low effort alternative to serious research

Cost Benefit Analysis - Evelina

Goals of Expert Elicitation

- Assess value of a project compared to BAU
- Take the societal perspective instead of firm perspective
- · Monetize direct / indirect / external costs and benefits

Main Idea

Exactly like CEA except change in perspective

Page 9 sur 14

- · use social discount rate
- · compare benefits to society with costs to society
- consider secondary markets
- · consider non-market impacts (for ex. better health conditions)

Evaluating indirect / external costs and benefits

- · Some values are hard to quantify, to give a monetary value
- Market price
 - · Estimate value of a national park by entrance fee and number of visitors
- Hedonic pricing/wage
 - Inconvenience due to traffic noise could be evaluated with housing price difference close and away from the traffic
 - · Health risk could be monetized based on wage of persons with and without this health risk
- Travel cost
 - · Evaluate value of recreational facility based on travel costs for accessing it
- Averting/defensive behavior
 - · Averting: value of noise estimated by cost of installing double glazed windows
 - Defensive: injury risk monetized by cost of protection equipment (helmets for ex.)
- Cost of illness / Loss of output
 - Monetize health costs with costs for treatment + loss of output due to loss of working time
- Contingent valuation
 - Evaluate WTP in a survey
 - Evaluate Willingness to accept compensation (WTA) in survey
- Choice models
 - Survey

Shadow Prices, Wages and Social

discount rate

Shadow Price

- social opportunity cost of a good or service
- market price without taxation
- Use price at country border

Shadow Wage

- social opportunity cost of labor
- convert wages to shadow wages with conversion factor

Social Discount Rate

- indicates social view how future costs and benefits.
- usually lower than private discount rate
- **Cost Effectiveness Analysis Cost-Benefit Analysis** Private perspective, e.g. investor Social perspective, i.e. society as a whole Direct costs in market prices Costs to society as a whole: Direct costs · Indirect and external costs, i.e. in secondary markets or of non-market impacts Direct revenues in market prices Benefits to society as a whole: Direct benefits • Indirect and external benefits, i.e. in secondary markets or of non-market impacts Market prices and observed wages Shadow prices and shadow wages Private discount rate Social discount rate Financial NPV • Economic NPV that is equal to B-C Financial payback period Ratios like B/C or (B-C)/C Financial IRR Economic IRR
- Social Rate of Return on private Investments (SRRI)
 - Assume social = private discount rate.

Social Rate of Time Preference (SRTP)

• rate at which society is ready to postpone a unit of current consumption to the future.

The value of the world's ecosystem services and natural capital -Reading

- Ecosystem often given too little weight in policy decisions
- · CBA to evaluate the value of the ecosystem
- The estimate represents a minimum value
- Ecosystem services and functions comprise (climate regulation, water supply, refuge, food production etc)
- Valuation based on WTP
- Source of errors: Analysis leaves out many categories of services, ill-information of people when asking for their WTP, majority of services and function outside the market, etc.
- Evaluation to 33*10^12 USD per year.
- · Normative argument, ecosystem should be weighted better in Policy decisions

Scenario Analysis - Evelina

Types of Scenarios

- · Predictive: What will happen
 - Forecast: In the most likely case
 - What-if: If that happens
- Explorative: What can happen
 - External: if something external changes
 - Strategic: if we act in a specific way
- Normative: How can a target be reached
 - Preserving: by adjustment in the current situation

Some Scenario Techniques

- Storylines
 - Philippe-like bullshitting
- Model-based
 - Model as possible future
- Story-And-Simulation
 - · Mix of the two above
- Scenario axes
 - If all combination of drivers A and B are possible. If not —> Cross impact Balance
- Cross Impact Balance
 - Internally consistent scenarios are those for which the consistency scores are positive

- Transforming: by significantly transforming the current situation
- Hybrid: Combine

Scenario Development Processes

- Desk Research
- Participatory
- Hybrid
 - Each driver affects other drivers positively or negatively —> Construct a Cross impact Matrix with expert elicitation
- Maximally-diverse scenario sets
 - Take internally consistent scenarios
 - Choose the one with the highest consistency score
 - Select the second one with the maximum squared euclidian distance
 - Select next ones with the maximum harmonic mean of squared distance (from the previously chosen scenarios)

Portfolio Theory - Tobias

Variable Discount Rate Page 11 sur 14

- Cost of capital = Risk-free rate + Risk premium
- Expected changes in investment environment over time can be taken into account by variations of the cost of capital
- Risk goes up, cost of capital goes up
- Rule of thumb: Magic Table
 - Values from literature: Risk premium given Probability of lower CF vs Size of CF reduction
- Changing Cost of capital can only be used with NPV, PI and LCOE —> not IRR

Real Options

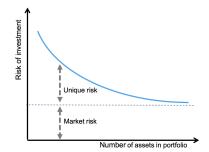
- How to mitigate your risk?
- Real options are not like financial options, it is a **method** not a contract.
- Three main types Real options
 - Option to wait:
 - · Valuation of possibility to take investment later and learn more in mean time
 - like financial call option
 - Option for follow-on investment:
 - · Valuation of present investment which may entail another investment opportunity
 - like financial put option
 - Option to abandon:
 - · Valuation of possibility to abandon project if not as profitable as desired
 - like financial put option
- Assign probability to a follow-on investment opportunity. The total NPV of the project (with the
 option) will be:
 - NPV project + Probability for follow on investment opportunity * NPV follow on investment

Portfolios, managing risk by spreading it

- Risk defined as variance or SD of returns (often assessed with historic data)
- Investment diversification:
 - Risk specific to specific asset can be hedged
- Market risks can not be addressed
- You can never undercut the market risk
- Portfolio Return
 - R = sum x_i r_i
 - x_i = investment share of asset i, r_i = return of asset i
- Portfolio Risk
 - V(R) = sum_i sum_j xi xj sigma_ij
- Efficient frontier:
 - For a two-assets portfolio with different risk, it is the "allowed" shares of each asset in the portfolio in order to have the highest return for the same risk

Communication - Tony

Cash et al. Model


• It is the job of communicators to make sure that their message is salient, credible and legitimate

Heath brother's book:

Success is: Simple Unexpected Concrete Credible Emotional StorieS

Tony's advice

Page 12 sur 14

- Make your talk emotional
 - · have it reflect your passion
 - fill it with good stories
 - · practice for a relaxed authentic delivery
- Make it novel
 - Help audience understand your message is new
 - Give audience something to smile/laugh about
- Make it memorable
 - · Keep it short with tree main points
 - · be honest

CRED Sabine Marx model

- Know your audience. Their mental models and preexisting beliefs, people absorb information better when it confirms their world view
- · Get your audience's attention: frame the problem in a manner that fits their unmet goals
- Translate scientific data into concrete experience
- · Don't overuse emotional appeals
- · Address scientific and climate uncertainties
- · Tap into social identities
- Encourage group participation

Computable General Equilibrium - Tony

Main Idea

- · Look at the whole economy
- · Can generate useful results in terms of short-term effects of small policy interventions
- Construct Social Accounting Matrix (SAM)
 - Many industry sectors (textile, energy, agriculture, banking,...)
 - Many endowments (labour, capital, raw material)
 - · Demands on the economy (consumption, savings, investments, exports)
 - In column: where each sector spends its money
 - · In line: where each sector makes money
 - SAM is basically a **balance sheet for the whole economy**, can read GDP, Consumption, Investment, Net Exports on it.
- · Gather Data on production functions
- Gather Data on Consumer preferences
- · Choose value to maximized and run the CGE

What CGE can tell us

- · Changes in GDP
- Changes in Productivity of Labor and Capital
- Input, Output and Relative Prices
- All of that at a hypothetical moment in time where the economy is at equilibrium (No Growth)

Problems

- The hypothetical moment in time is pure fantasy
- Any significant policy will have endogenous effects on technology —> Disturbs equilibrium
- No way of knowing if answers from CGE have ever been right and if they have been we don't know why

Page 13 sur 14

- · Simple answers to complicated problems
- · Should not be used as forecasting model, but as thought experiment
- Too complex to understand (at least for poor old Tony)

Path Dependency - Tobias

Path-dependency and Lock-in

- · In the case of increasing returns to scale
- · Technology with positive feedback result in increasing deployment of the technology
- · Set of historical events determine final outcome of technology allocation
- Potential Lock-in
 - · Lock in is persistent state where sector trapped into a specific technology.
 - Alternative technologies are locked-out.
 - Advantage:
 - · can lead to (short term) efficiency
 - Disadvantages:
 - Low learning rates -> long term inefficiency
 - no competition —> no innovation
 - Low diverse systems less resilient to shocks (more fragility towards risk)

Factors leading to technological lock-in

- Large fixed costs (sunk cost) -> high replacement costs
- Network effects -> availability of infrastructure make goods more attractive (whatsapp)
- Technological learning -> Learning curve, learning by using
- Shared expectations -> using technologies shapes our norms (QWERTY)
- · We don't know ex-ante what the learning curves are going to be

Considering path-dependency in models

- Case: Two firms with substitutable technology, market share after some time depends on the returns to scale of the technology.
- Decreasing returns to scale lead to equilibrium (both firms 50%)
- · Constant returns to scale lead to anything (any combination possible)
- Increasing returns to scale lead to lock ins (one firm 100% other 0%)